
DARPA Research Panel 1:
Secure Systems and Access Control

Panel Chair: Teresa F. Lunt, DARPA

Panelists:

Dan Sterne, TIS

Roshan Thomas, ORA

Mary Ellen Zurko, OSF

Jay Lepreau, University of Utah

John Rushby, SRI International

Over the past two decades, much of the research in computer security has been

sponsored by the DoD and has focused on multilevel security (MLS). Several lab-

oratory prototypes were built to demonstrate the feasibility of high-assurance MLS

systems. However, very little of this work has transitioned. While many vendors did

produce MLS versions of their products, these generally diverged from the standard

products. This divergence leads users to prefer the standard versions, since most of

the popular applications will not be available or may not work correctly on the lesser-

known MLS versions. And this, in turn, means that those users who need MLS still do

not have an a�ordable solution; much customization and special-purpose applications

and integration code must be written.

Instead, what is desired is for vendors to build security into their mainstream

products. This is feasible only if a large segment of users want the security. The

security features of general-purpose products must meet the needs of a broad set of

interests, not just MLS. Policy-neutral security mechanisms could enforce any number

of organization-speci�c policies, including MLS, but would not have any single policy

\wired in." These mechanisms should allow a broad enough set of policies to be

speci�ed and enforced so as to appeal to a wide set of user communities, such as

�nance, health care, and commerce, as well as defense. One can envision a future in

which national-security-\blessed" policies will be available from third-party vendors

for use with these generic, but specializable, products.

Most organizations have more complicated information protection needs that sim-

ple mandatory and discretionary access control matrix-oriented policies are capable

of expressing. In addition to the familiar mandatory and discretionary access control

policies, we should also explore richer policies such as role-based, task-based, and

1



workow-based policies so as to appeal to the broadest possible constituency. To

do this, we need to identify a desirable range or class of policies, investigate natural

ways of expressing such policies, identify and develop a common set of mechanisms

capable of enforcing the desired range of policies, develop policy \compilers" to map

user-speci�ed policies into the base mechanisms, and address the related assurance

issues.

Based on current research trends in operating systems, we expect future systems

to be more modular. This may also be true someday of database systems. This

will give us the opportunity to make security a modular and reusable component of

systems. This has the advantage that the end user need only use the security modules

if they need and are willing to pay for the security. It also means that various degrees

of security can be made available for use with the same products. Moreover, it may

be possible for several di�erent systems to share the same security \modules," so

that a common security policy can be enforced across diverse system components.

There is the additional advantage that security modules can be replaced by high-

assurance national-policy-enforcing modules when the systems are used in certain

defense applications.

The panelists explore these and other issues being investigated in the DARPA

research program.

Domain and Type Enforcement Firewalls

Dan Sterne, TIS

The pervasive need for E-mail and world wide web services and the growing impor-

tance of electronic commerce have driven many organizations to connect their local

area networks (LANs) to the Internet in spite of the signi�cant security risks this in-

curs. As a defense, many organizations use �rewalls to constrain interactions with the

Internet, allowing only the use of those services and protocols deemed relatively safe.

While �rewalls are a valuable tool, they reduce but do not eliminate Internet security

risks. For example, a �rewall that permits outgoing E-mail cannot tell whether such

E-mail contains the announcement of a company picnic or the minutes of a highly

proprietary corporate strategy session. Consequently, it allows either to ow out to

the Internet, indiscriminantly. Similarly, a �rewall that permits LAN users to surf

and view anonymous remote web sites freely will not protect LAN hosts from attack

by malicious web pages containing executable content, e.g., postscript or Java.

Addressing these Internet security problems requires protection mechanisms be-

yond those provided by �rewalls, namely, operating system security mechanisms.

Unfortunately, mainstreamUNIX systems (and other mainstream operating systems)

provide only weak, discretionary protection mechanisms that are insu�cient for these

2



purposes. In addition, UNIX systems are relatively easy to penetrate. In part, this

is because they are di�cult to con�gure securely, even by expert administrators.

Moreover, they rely on a large number of complex programs that execute with root

privilege; an attacker that subverts a single root program gains control over an entire

UNIX system. Multilevel secure operating systems provide stronger protection but

are viewed by many organizations as inexible and ill-suited to the security problems

of the commercial world.

Under DARPA funding, TIS is developing an integrated approach for Internet

security that combines both �rewall and secure operating system technologies. The

foundation of this approach is a previously developed UNIX prototype whose kernel

provides Domain and Type Enforcement (DTE), an extended version of Bobert and

Kain's Type Enforcement. DTE is a strong yet exible form of access control that can

be con�gured to support a variety of site-speci�c security policies. An administrator

con�gures a DTE system by writing high level access control rules in DTEL, human-

friendly, machine-interpretable policy language. DTE controls access not only to �les

and devices, but network communications services. In order for a process on a DTE

system to be able to send or receive network tra�c, the tra�c must be labeled with

a type that is speci�ed in the DTE policy as sendable or receivable in the process's

domain. The DTE prototype currently uses the option space in IP headers to store

type labels and other DTE security attributes.

The other central component in this approach is a �rewall that integrates DTE

and the TIS Firewall Toolkit. DTE is used in the �rewall in two ways. First, the

�rewall is made stronger by organizing the �rewall operating system components

and �rewall application proxies into small DTE-enforced execution domains. This

increases the �rewall's resistance to penetration by an attacker. Second, the �rewall

is made smarter by incorporating into it cognizance of the DTE capabilities and DTE

policies of hosts on the LAN it protects.

In this approach, the DTE �rewall's role is to support local hosts' DTE policies

and to coordinate its actions, including policy updates, with other DTE �rewalls.

These notions are being investigated via three phases of prototyping. In the �rst

phase, a DTE �rewall attaches DTE attributes to inbound tra�c from the Internet

and checks the appropriateness of labeled outbound tra�c. It also selectively chan-

nels to DTE hosts important but potentially dangerous network services (e.g., Java)

that may convey too much security risk for ordinary (i.e., non-DTE) hosts that are

also present on the LAN. In the second, two distinct enclaves protected by DTE

�rewalls exchange cryptographically protected network tra�c. This tra�c includes

DTE security attributes having semantics that have been mutually agreed upon by

both enclaves. This allows role-based and other kinds of security policies supported

by DTE to extend across the Internet to enclaves operated by di�erent organizations.

In this phase, the DTE policies of the enclaves protected by the DTE �rewalls will

3



di�er but overlap. The policy overlap, speci�ed in DTEL, de�nes the kinds of infor-

mation that both enclave's owners have agreed to exchange. In the third prototype,

Domain and Type Authority (DTA) Servers will provide directory-like network ser-

vices so that �rewalls can dynamically discover the types of information that can be

exchanged safely with other �rewalls.

The increased reliance of commercial and government sectors on the Internet and

its associated technologies intensi�es the need for improved Internet security. While

�rewalls and secure operating systems have critical roles to play, a comprehensive

approach requires both. By combining these technologies synergistically, we hope to

better address the growing security needs of the government and commercial sectors

and enable the safe exchange of a broader array of services over the Internet.

Task-based Authorizations: A Research Project in

Next-generation Active Security Models

Roshan Thomas, ORA

In this project, we develop a new paradigm for access control and security models,

called task-based authorizations. TBA is particularly suited for emerging models of

computing. In particular, this includes distributed computing and information pro-

cessing activities with multiple points of access, control, and decision making. TBA

articulates security issues at the application and enterprise level. As such, it takes

a "task-oriented" or "transaction-oriented" perspective rather than the traditional

subject-object one. Access mediation now involves authorizations at various points

during the completion of tasks in accordance with some application logic. In contrast,

the subject-object view typically divorces access mediation from the larger context in

which a subject performs an operation on an object. By taking a task-oriented view

of access control and authorizations, TBA lays the foundation for research into a new

breed of "active" security models.

In a task-based approach to security, the basic entities are:

� Tasks and sub-tasks: these represent strands of activity.

� Authorizations: these are approval steps that occur at one more points in the

lifetime of various tasks and sub-tasks.

� Dependencies: these are relations between authorizations and their encompass-

ing tasks.

� Authorization policies: these are authorizations and dependencies combined to

form meaningful expressions of authorization policies.

Central to the TBA approach is the notion of an authorization-step, representing

a primitive authorization act. In the paper-based forms environment, the analog

4



of an authorization-step would be an approval on a form, identi�ed by a signature.

The active aspects of the model can be attributed to the fact that TBA recognizes

the interaction of authorizations and permissions as it occurs within the lifetimes of

tasks and activities, thereby enabling it to take an active role in the management of

authorizations and corresponding permissions.

The key research directions that we are investigating during the course of this

project include the following

� TBA as an active security model

� modeling and speci�cation of authorization policies

� use of visual languages to specify authorization requirements and policies

� application of TBA to distributed computing and workows

A model such as TBA can be used to address the gap that exists today between the

enterprise and systems perspectives of security. Thus TBA can form a bridge between

high-level enterprise security models and low-level access control models. TBA will

have broad applicability in areas such as the automation of mission critical command

and control scenarios where authorization sequences need to be carefully controlled,

security management of complex operations in high-assurance client-server environ-

ments, as well as in forms-based workow applications such as logistics management,

distributed planning and claims processing.

User-centered Security and Adage

Mary Ellen Zurko, OSF

While "user-friendly security" is viewed as a humorous oxymoron in some circles, the

security community has long acknowledged the importance of usable secure systems.

There was a pragmatic recognition that secure systems that are di�cult to use will get

circumvented or insecurely managed by their users. In 1975, Saltzer and Schroeder

identi�ed psychological acceptability as one of eight design principles for computer

protection mechanisms [2]. While other principles from that paper such as least

privilege and fail-safe defaults have become standards in the security literature, there

has been very little work done on user-friendly security. The lack of work in this area

is due in part to the history of research, development, and use of secure systems. Most

research and development in secure systems has strong roots in the military. People

in the military are selected and trained to follow rules and procedures precisely, no

matter how onerous. This user training and selection decreased the pressure on early

secure systems to be user friendly. In another example of military inuence, the

�rst security model to achieve widespread attention in the security literature (Bell

and LaPadula [1]) encoded military classi�cation levels and need-to-know categories.

5



Much e�ort was then spent trying to apply this model to all uses of secure systems.

Finally, mathematical rigor has been emphasized over usability in many security

modeling e�orts.

In considering how best to integrate usability and security, we considered three

di�erent approaches. We can apply established procedures for enhancing usability to

developing or existing secure systems.While this approach seems the most obvious

and the cheapest, it has rarely been documented. A second approach is to integrate

appropriate security services into software with a strong usability component, such

as mass-market applications or groupware. Most of the work in this area has focused

on privacy, and has taken place in the Computer Human Interface (CHI) commu-

nity. We call the third approach user-centered security[4]. The term refers to security

models, mechanisms, systems, and software that have usability as a primary motiva-

tion or goal. This approach provides the tightest integration between usability and

security.The timing seems right for a renewal of interest in synthesizing usability and

security. There is increasing pressure on government funded researchers to produce

results that can be used to solve real world problem, and the standard for ease-of-use

in commercial products continues to rise.

We are pursuing our vision of user-centered security in the Adage project (Autho-

rization for Distributed Applications and Groups) [3]. Adage will provide a toolkit

that will allow distributed applications to take advantage of Adage's services, en-

couraging consistent mechanisms and policies throughout an organization. Adage is

speci�cally conceived to overcome the usability problems with authorization mecha-

nisms for distributed applications in use today.

The �rst of these usability problems is that the applications unnecessarily export

the underlying data structure as the user model. The user metaphor for Access

Control Lists (ACLs) is the ACL data structure; for system masks it is the system

mask. The user is given a rudimentary formatted display of the information in the

data structure (or perhaps just a literal display of its values) and must learn the

algorithm that the computer software will use to evaluate that data structure in

order to understand what access control policy is actually instantiated. A large gap

remains between these traditional security mechanisms and a user's or site's security

policy, stated in natural language. By analogy, ACLs are the assembly language of

security policy. They are a complex, low-level language. Only an expert in a particular

implementation of ACLs can hope to program it correctly the �rst time. ACLs have

the added disadvantage of being di�cult to test without making changes on a live

system. One component of Adage will be a higher-level authorization language that

begins to close the gap between security mechanisms and site security policies. It

will come with a visual builder that allows site security administrators to build up

an authorization policy from visible policy pieces. Furthermore, these policies can be

shared with other domains. The primitives supported by this language will support

6



a wide range of user and application policies, because they will be based on security

policies actually in use and on interviews with security administrators.

One insight that Adage shares with current work on roles is that within organiza-

tions it is natural to think about both users and objects in terms of how they relate

to each other and what place they �ll within the organizational structure. Adage will

use groupings to reect these intuitions. It will use groupings of objects and of actions

to more easily refer to objects and actions in a security policy. Groups of users and

their roles will receive particular attention. Adage will provide an infrastructure for

de�ning the relationships and restrictions on groups and roles that will allow it to

support models from both the security and groupware literature. For example, two

groups can be restricted to have no membership overlap, to support static separa-

tion of duty. Users taking on the role of Chair can be restricted to those users in a

particular group.

Adage will continue the work in user-centered trust models by modeling common

trust dimensions such as amount of trust (How much do I trust you? How much do I

distrust you?) and type of trust (What do I trust you for?). Adage will apply this trust

model to services whose information is used as input to authorization decisions (such

as authentication servers and group membership servers). This will allow an enterprise

to articulate a trust policy and have it apply to all its authorization decisions. In

addition, the model will allow trusted services to introduce other trusted services,

forming chains of trust where the amount of trust degrades over hops, much as real-

life trust does.
[1] Bell, D. E. and L. J. LaPadula. Secure Computer Systems: Uni�ed Exposition and Multics,

Technical Report ESD-TR-75-306, The MITRE Corp., March 1976.

[2] Saltzer, Jerome H. and Michael D. Schroeder. \The Protection of Information in Computer

Systems", in Proceedings of the IEEE, 63(9), 1975.

[3] Zurko, Mary Ellen. Adage home page, http://www.osf.org/www/adage/index.html.

[4] Zurko, Mary Ellen and Rich Simon. \User-Centered Security", in Proceedings of New Security

Paradigms Workshop, 1996.

Encapsulated Environments Using the Flux Operating

System

Jay Lepreau, University of Utah

Most modern operating systems provide a concept of \virtual machines" | e.g.,

processes or tasks | and allow several such virtual machines to coexist on a single

machine and compete with each other for hardware resources. Such separate processes

are a classic way to support separate information domains. In the 1970's the term

\virtual machine" usually referred to an OS architecture that exported what appeared

to be the naked hardware, and an entirely separate copy of a stand-alone operating

7



system ran on that \virtual machine."

Based on a synthesis of microkernel and virtual machine concepts, we have de-

veloped an OS architecture that allows recursive virtual machines (virtual machines

running on other virtual machines) to be e�ciently implemented, in software, by a

microkernel running on generic hardware. The model can also be called a \nested pro-

cess model," in which any process can completely contain and control other processes

within it.

Virtual machines were a classic way to provide high security subsystems, fully

isolated from one another. Our recursive model takes this a step further, e�ciently

providing hierarchical control by any process in the system. Such exible and hier-

archical control is ideally suited to supporting the security requirements of arbitrary

untrusted applications, often loaded over the Internet and Web. Each security man-

ager can completely control the resource (memory, cpu, higher-level services) of its

children. Each child may, if it wants, implement similar control over its children. In

this manner the children can control and isolate further untrusted applications.

8


